A Language for Geometric Reasoning in Mobile Robots
نویسنده
چکیده
Isaac is a rule-based language for mobile robots currently under development at NMSU. A successor to Altaira, it replaces Altaira’s state-based rules and tile-based navigation with a more general geometric reasoning mechanism. The language uses the FuzzyCLIPS expert system shell as a reasoning backend.
منابع مشابه
Cooperative Control of Mobile Robots in Creating a Runway Platform for Quadrotor Landing
Multi-agent systems are systems in which several agents accomplish a mission in a cooperative manner. In this paper, a novel idea for the construction of a movable runway platform based on multi-agent systems is presented. It is assumed that an aerial agent (quadrotor) decides to make an emergency landing due to reasons such as a decrease in energy level or technical failure, while there is no ...
متن کاملA Prototype Inference Engine for Rule-Based Geometric Reasoning
Isaac is a rule-based visual language for mobile robots using evidential reasoning and a fuzzy inference engine. A prototype inference engine for Isaac has been implemented, permitting experiments with the Isaac language. This paper discusses this inference engine, describes some preliminary experiences with programming Isaac rulesets, and proposes future optimizations and enhancements to the i...
متن کاملExperimental Analysis for Measuring Errors in Wheeled Mobile Robots (RESEARCH NOTE)
This paper presents experimental analysis of wheeled mobile robots. Mathematical modelling of the mobile robot is presented. The mobile robots consist of an omni-directional and three differential drive mobile robots are tested and moved in given trajectories and the systematic errors of the robots are determined. A new method for omni-direction mobile robot was introduced in which the robot wa...
متن کاملAre Autonomous Mobile Robots Able to Take Over Construction? A Review
Although construction has been known as a highly complex application field for autonomous robotic systems, recent advances in this field offer great hope for using robotic capabilities to develop automated construction. Today, space research agencies seek to build infrastructures without human intervention, and construction companies look to robots with the potential to improve construction qua...
متن کاملFormation Control and Path Planning of Two Robots for Tracking a Moving Target
This paper addresses the dynamic path planning for two mobile robots in unknownenvironment with obstacle avoidance and moving target tracking. These robots must form atriangle with moving target. The algorithm is composed of two parts. The first part of thealgorithm used for formation planning of the robots and a moving target. It generates thedesired position for the robots for the next step. ...
متن کامل